Tag Archives: Wiring

The Little Car That Couldn’t

I’ve got a real sense of pride and accomplishment now that the CitiCar is able to drive out on the open road again. I’ve taken it on a few test drives, and I’ve ran into a few issues.

The biggest risk of failure is when there is a change – no matter how small. Hold my beer… I just replaced the entire powertrain with equipment that I was unfamiliar with.

The most notable issue is that the car felt like it lost power quite often. It was a bit annoying having to coast to a safe spot to pull over and diagnose what was happening.

The beginning

Teddy and I went on a test drive into town. We had a great time visiting C&C Frozen Treats, I want Candy, and eating ice cream at the town square. We headed over to McDonalds for a bite to eat and then headed towards home.

It first started where I pressed the throttle and the motor would jolt and turn off. After doing this a few times, I slowly pressed the throttle and was able to continue to drive. I suspected that the motor controller was implementing a fail safe to make sure the throttle high-pedal was off before the resistance changed on the potentiometer, and that there was some kind of race condition. As the CitiCar continued to have trouble a little later, I would keep trying to ease my foot lightly onto the throttle.

No Power

Finally, the motor wouldn’t turn on at all and I ended up coasting into the Knotty Pine restaurants parking lot. I was at a loss. I couldn’t figure out what was going on. I had power for everything else. I could hear the contactors activating when shifting between forward and reverse. I pressed the throttle lightly and heard the main contactor activate. “It’s back!” I thought. My next hypothesis was that maybe there was some kind of additional fail safe where the controller would lock me out of operating it for a couple minutes to protect itself.

Paranoia

Continuing on, I was praying I could get home without calling a tow truck. I was going up hill. I decided to play it safe and take a side street, still going up hill and… I lost power again. Here I was, slowing down going up a hill, and someone was behind me. I was almost at a dead stop when the car drove around me. I was a bit paranoid when I recognized the markings of a police car.

I couldn’t go up hill, so I coasted backwards into a driveway and put on the emergency brake. I was trying to figure out the problem in case the officer came back around to check in on how I was doing. I was there for roughly five minutes, certain that I was stranded. It came back alive and I was off, praying I could get back home.

EV at the Gas Station

I didn’t make it far. As soon as I turned onto the main road, I lost power. I coasted into the new gas station parking lot and just barely got into a nice parking spot. I figured if I was going to be there for awhile, I could grab a bite to eat. The person in the vehicle next to me asked if he could take a photo of the car. We talked a bit and I showed him around the car.

I broke out some alligator clips and a multi-meter and started testing connections. I traced the problem down to a loose connection on the throttle high-pedal contact switch. The wire had almost come off. I pushed it back and it was good to go.

I started to approach the exit and realized the speedometer didn’t have any power. I looked over at the fuse block and saw a light was on. I must have blown the fuse when testing connections with the alligator clips. I pulled off, replaced the fuse, and left the gas station.

Final Stretch

I lost power once more on the way home without much of an area to pull off. I pulled as close to the curb as I could, fixed the issue, and continued on my way.

As I pulled into my subdivision, I was relieved to know that the last half mile was just coasting home. That was the roughest trips I’d ever been on in the CitiCar. Taking a closer look, I noticed the switch’s spade was bent a little, and there was no slack on the wire connected to it. I created an extension wire to add some slack. I noticed the connection felt loose, but I thought nothing of it… until I started running into problems with the next drive.

The Actual Problem

The problem was that the contact switch on the potbox is not as wide as my spade terminals. The female spade terminal was loose and kept falling off.

Snug connectors on throttles high-pedal switch
Pairs of 2.8, 4.8, and 6.3mm spade connectors next to an insulated 6.3 spade connector

I ordered an assortment of spade terminals in various sizes. The 4.8mm female connector fit snug onto the switch. I made a few mistakes trying to crimp a non-insulated terminal. I watched a couple of videos and was able to figure it out.

Stalling ICE

I was thinking what would happen if an ICE car did this – and then I realized it does. The first car I owned was a Dodge Colt. My dad matched half of the price. It was a good car, but it was stalling all the time – at stoplights, and even traveling downhill at 90 mph. I was often having trouble trying to start it back up. I knew nothing about cars, but my dad did. I recall he seemed to be close to figuring out the problem. It really stumped him. Eventually the car ended up in a junk yard. I feel as if the CitiCar is much simpler to troubleshoot. Rather than moving parts, vibration, noises, and fumes – it’s just bare-bones simple electronics.

Alltrax Troubleshooting (and story about contactor)

In other news

I’ve changed both diodes on the forwards and reverse shifter from 1 amp (1N4006) to handle 3 amps (1N5408). In addition, it’s legs are thicker and less susceptible to breaking, causing the same experience with no power to the high-pedal – however one direction would still work until the second diode broke.

The new D&D Motor Systems motor is about five miles slower than the stock motor from the manufacturer.

I’m looking into other options to track speed without GPS.

I’m looking into installing small lights to work on the car easier and show it off.

I might setup the solar charging station / EVSE this weekend. It can also serve as a backup power supply for power outages.

I’ve been learning about field weakening as a potential option to increase the speed of the motor. From what I gather – 2/3 of original nichrome resistor between S1 & S2 terminals on the body of the motor, use a solenoid to turn it on.

Advertisement

Powertrain Upgrade

Quite a bit has happened since the last post where the majority of my nights and weekends were focused on the CitiCar, and a bit exhausted by time I’m done for the day. The videos were still being posted, but I just didn’t have the mental willpower to write up a detailed account of what was done. here is a brief summary of the last two weeks.

Battery cables

2015 Chevy Volt lithium batteries and charger installed into car and connected in parallel with cables from an old EV and a few battery cables that I made myself from materials provided by a local CitiCar enthusiast.

Battery terminal side-brackets installed.

CitiCar battery cables

Main Fuse & Switch

Installed an ANL fuse box to hold the 400 amp ANN fuse. “Sculpted” the cover to make it fit over the thick 2/0 cables and lugs connected to it.

Installed a heavy duty switch to disconnect the power that could handle the large number of amps that the motor will draw from the batteries. Purchased some screws at the hardware store to mount the switch.

Continuing to add cables along the path from the positive battery terminal to a switch, fuse, contactor, etc. Cleaning battery acid from cable lugs donated from another EV.

Main Fuse & Switch

Fuse box mount

Created a backplate to mount a new 12 volt fuse block out of diamond plate aluminum, and mounted it into the car where the accessory battery had previously sat.

Wired up chargers charging wires. Zip-tied the extension cable going to the J1772 adapter along the cars frame. Ran 10 gauge wire to the front of the car, specifically to run the 12 volt DC-to-DC converter and to control the motor controller and contactors from the dashboard.

CitiCar Fuse Box Mount

Installing DC2DC

Wrapped power supply cable to the front of the car with split tubing to protect it.

Installed a 20 amp 12 volt power supply in the CitiCar to convert the batteries 48v power supply to 12v. At most, it can handle 240 watts.

Added a LED light strip with a switch.

Installing DC2DC

Powered Dashboard

Connect the dashboard to the 12v fuse block. Wire up the frame to the 12v negative. The cabin light is unable to get power. The original contactors are still activating.

Powered Dashboard

Wires and Switches

Painting battery cables red. Starting to prepare other cables to paint.

Comparing two separate motor reversing SW202 style switches. Changing from 12v coils to 48v coils to simplify wiring and reduce the need for relays.

Change the old 120v charger cable into an extension cord by adding a NEMA 5-20R receptacle socket. Added a second charging cable plug to the car so that the batteries can be charged via J1772 in the back, or 120v on the side by changing which cord is plugged into the back of the charger.

Wires and Switches

Painting Battery Cables

Painting battery cables with Plasti Dip to indicate how they are connected to the batteries. Added heat shrink where it was missing. Cut off rubber terminal covers. Wrapped up terminal ends with painters tape.

  • Red – Positive, and motor A1
  • Black – Negative, and motor A2
  • White – Motor Negative
  • Blue – Motor S1
  • Green – Motor S2

Painting battery covers.

Paintiing Battery Cables

Plasti Dip Battery Modules

Continuing painting battery cables and the battery covers on the 2015 Chevy Volt battery modules. Problems with using painting tape to paint two colors of Plasti Dip, as well as an unexpected early morning rain getting things wet. Cleaning up and painting battery modules blue for a more appealing look. Finish painting the battery cables.

Plastic Dip Battery Modules

Finish Battery & Cables Paint

Finish painting the battery volt modules and peel off the painters tape. Clean and neutralize battery acid on battery cable lugs.

Clean and neutralize acid on passenger side battery box floor. Start laying down thermal layer and toolbox liner.

Improve technique to peel painters tape from wet Plasti Dip to have nice hard edges.

Added some corrasion/oxidizing protector to battery cable lugs and battery box floor.

Finish Battery & Cables Paint

Battery Box Liner

Line the battery compartment of the CitiCar with toolbox liner. The liner is preferred because it is non-conductive. The frame of the car is conductive and wired to the battery negative, so this helps prevent a short in case a battery positive wire accidentally touches the frame. The thermal barrier may help with battery temperatures and a little extra padding for bumpy rides.

Drivers side was neutralized. Corrosion protector was removed, as it left an oily residue and wouldn’t be suitable for applying adhesives to keep the toolbox liner attached.

Battery Box Liner

High Voltage Stickers

Created some battery labels to warn about high voltage, and to provide details about the batteries.

Creating High Voltage Stickers

Drivers Side Batteries Installed

Re-installing the drivers side painted batteries, main switch, and fuse after lining the battery box with toolbox liner.

Drivers Side Batteries Installed

Battery Terminal Caps

Cut motor mounting brackets down further with new diamond cutting wheels. More battery cables were installed. Created caps to protect exposed terminals from moldable plastic that melts in warm water. Installed shunt in a different position for easier access to plug in wires.

Battery Terminal Caps

Powertrain Test

Wired up the motor and motor reversing switch. Setup switch and diodes on the front of the car to activate the contactors and let the motor controller know if the vehicle is moving in reverse.

Powertrain Test

CitiCar Runs Again

Troubleshoot contactor activation. Reverse direction of Forward/Reverse diodes. Got the wheels to spin (and in the correct direction). Go on a test drive.

CitiCar Runs Again

Alltrax Troubleshooting

Configure motor controller to accelerate faster, adjust voltage limits, and provide more amps to the motor. Since the motor was just replaced, I topped off the differential fluid. The speedometer wasn’t turning on, so I replaced it with a spare that I had laying around. Drove into town and ran into problems on the way back home with a burnt fuse and a disconnected high-pedal switch on the throttle.

Alltrax Troubleshooting

J1772 Inlet

J1772 inlet socket on a CitiCar

The J1772 inlet has been installed onto the tail end of the CitiCar. I no longer need to unlock the trunk and drag out a socket on the end of a long cord to plug in.

The body of the car only offers a few places to put the socket. My original goal was to install it next to the exiting inlet for power from the house. The area surrounding it was obstructed by the door hinges on the inside, or had “electric” written in vinyl on the outside of the car.

I settled for a ridged area by the passenger tail light in the back. There are holes by the contactors that were originally used for the battery and motor cables. I can thread the cable from the adapter to the charger.

CitiCar J1772 Installation

Removing Wires

A fuel gauge from a CitiCar reads from 14 to 19 volts

I removed the three wires from the battery compartment all the way to the dashboard. One was already identified as being for the volt meter. The thicker wires were discovered to lead up to the charger.

While I was at it, I removed the volt meter and found that it had a round hole in the dashboard behind it as opposed to a square hole to match its shape. The hole is too small for the AiLi volt meter. I would prefer to keep the original volt meter and try to control the voltage fed to it with an Arduino to represent the capacity rather than the voltage.

Wiring Harness

Wires brought back to the battery box through a split loom

Wires were thread from the font of the car to the battery compartment through a split loom zip-tied to the aluminum frame. I drilled a hole slightly behind and to the left of the throttle to pass all of the wires through. They connect up to the motor controller and the reversing switch. Short extensions were setup for each connection so that I don’t need to reach into tight spaces to disconnect the wires.

Fix spliced wire with a network keystone jack

When I was trimming the excess split loom tube within the CitiCars battery box, I cut through one of the cables still inside. It was the AiLi battery monitor cable. The cable contains 4 tiny wires, surrounded by strands of what appears to be another line acting as a shield. I had some left over networking Cat6 connectors and keystones and wires up each side to make a solid connection.

Battery monitor still works after fixing wire with network connectors

I was able to hook one of the Chevy volt batteries up with a dc-to-dc converter and a light to confirm that the AiLi meter was reading the correct voltage and change in current as I flipped the switch on and off.

This wasn’t so bad after all. I would have probably ended up doing this anyway. The wire was too short to reach the shunt to begin with. Now that everything has a network connector, I can create an extension cord to reach the shunt in its final position.

Racing Use Only

Racing switch panel

One of my favorite pieces of flair is the racing switch panel for a car that can’t go faster than 35 mph. I got out my old label maker and labeled the different switches. Each switch is a project on its own.

AMPS

The “AMPS” is the “User Mode” wire on the motor controller to let it switch driving profiles. A driving profile can change the maximum amps the motor is allowed to draw.

START

I’m considering how to approach this. I have the CitiCar play a sound of an engine revving up to race, or play a random list of custom sounds.

RUN

The run switch is to turn on the 12 volt DC-to-DC 12 volt converter to use the lights, fans, horn, etc. The car will not operate without this being flipped up.

3SPD

The is going to setup the car so that the motor controller only sees three different positions when the throttle is pressed. It will also allow the original contactors to activate. It will mimic the speed and sound of the original motor controller in the CitiCar.

RDO

This is the power to turn on the radio and amp.

In other news

I ordered some battery side terminals that another C-Car owner has proposed.

I purchased another SW202 switch, but with 48 volt coils. I will no longer need to use relays to provide 12 volt power to the coils.

I’ve composed a document asking the community for help setting up a maker space and talked to a couple people about it.

Hello,

I need help setting up a “Maker Space” within, or near the town of Front Royal, Virginia.

A maker space is a collaborative workspace with a wide variety of equipment available to use that would otherwise be inaccessible to the general public due to costs, electrical requirements, zoning, noise, ventilation, and space. A maker space may consist of a wood shop, machine shop, electronics workstation, 3D printers, computers, embroidery machines, and even Lego building blocks. This educational building’s purpose will be to have fun making stuff, and learn from others making stuff.

I attended the Art Institute of Pittsburgh in 1994, majoring in Industrial Design Technology on a scholarship. I long for the days having access again to a large workshop with a very wide range of industrial equipment. I also went to Mineral County Technical Center in West Virginia for Carpentry, and loved the computer lab along with the art, shop, and mechanical drafting classes throughout middle and high school. My profession took off with the information technology (IT) industry programming software, but I have always retained my creativity making things at home.

Like many others, I often find myself justifying the need to purchase a new tool, machine, or a large surplus of supplies that may have limited use to me. Afterwards, these products collect dust in the garage until someone “borrows” it, to then collect dust in their own garage. As tools, materials, and past projects accumulate, it becomes difficult to find space to store them while keeping my workspace clear of debris.

Some maker spaces not only provide a workshop, but also rent out storage and artist spaces for your own personal work area or show room within the building, providing members 24/7 access. In addition, many offer classes and training, including STEM educational programs.

I can not do this alone. I have a goal, but this is bigger than me. My intent is to set this up as a non-profit organization. Because a maker space can expand and offer such a wide range of equipment and materials to adults and children, I am looking for help from the community.

● Form a board of directors and a mission
● Draw out makers already within the community
● Identify community needs & interests
● Provide ideas & imagination
● Find funding & sponsorship
● Consolidate and acquire equipment, tools, and materials
● Find a location for light industrial use

Please contact me if you can help,
Lewis Moten
(###) ###-####
********@gmail.com
https://www.facebook.com/lewis.moten

Lewis Moten, October 15, 2020, Maker Space Proposal

Motor Wires

Most of yesterday and the entire day today was full of rain. I wasn’t able to get much done compared to Saturday. Most of the day has been spent planning, researching, and cleaning the garage.

Alltrax Wiring

I’m working in a tight space with the motor controller, contactor, and motor. It’s difficult to bend thick cables, and harder to work with thick terminals overlapping each other.

I was in a tough spot with trying to get two wires connecting to the motor controller, and I was wondering if it was important that the wire from the motor goes to the controller, rather than directly to the contactor. Electrically, it didn’t seem to make much of a difference.

Alternative wiring proposal

C-Car and one DIY EV conversion owner said their controllers were wired up in this way. I sent an email out out the manufacturer.

Wiring Question

Hello.

I have an SR-72500 Motor Controller.

I am installing this in a CitiCar, which was previously controlled by applying 3 different voltages to the motor.

I’m looking at the Generic Series /w SW202 Reverse wire schematic in the operators manual SR (page 22)

On all diagrams in the manual, I see:
1 wire going from the SW180 contactor to the motor controller B+ terminal
1 wire going from the motor controller B+ terminal to the series motor A1 terminal

I’m working in a tight space and it’s difficult to get two lugs onto the B+ terminal.

Can I have the wire to the motor come directly from the SW180 contactor? These are the changes I am proposing:

keep 1 wire going from the SW180 contactor to the motor controller B+ terminal (no change)
add 1 wire going from the SW180 contactor to the series motor A1 terminal
remove 1 wire going from the motor controller B+ terminal to the series motor A1 terminal

The Answer

Technically speaking it will work, electrically speaking you’re going to cause an issue doing that. If this was a low current system, like a stereo then this would be fine, but since we’re low voltage high current we have to know where current is at all times. So when you put the two wire connection on the solenoid it turns the motor and controller into two separate loads the moment the solenoid closes and both are fighting to get the current coming out. Motor is bigger, it gets the current, and the controller just watches things happen without doing its job.

If you wire it that way, it will operate though, it may just do some weird things randomly.

I was taken back a bit. I half expected a basic answer of something along the lines of – only wire it the way we say to do it. This person went into detail of “WHY” with a simplified explanation. It’s exactly the answer I needed. I actually feel like I learned something.

I posted the manufacturers response on the Facebook post for the other C-Car owners to learn about as well.

Motor Cables

Yesterday I was able to put some cables onto the motor, switches, and controller. I wired up the main contactor solenoid to the motor controller and a small switch as a safety measure to prevent the solenoid from being activated while working on it.

The main contactor was flipped to allow the cable to the controller to be made shorter. The suppression diode was too close to the metal mount for the SW202 switch, so I bent it into a new shape that actually made it a bit more ridged and let me get my hands down into the area much easier.

I also started to setup a couple relays to allow 12 volts to pass to either side of the SW202 switch based on if the car is going in forward or reverse. While I was at it, I started labeling the wires so it would be easier to figure out how to connect everything up once I started running wires from the dashboard.

Cables installed allowing power to transfer between the main contactor, motor controller, motor reversing switch, and the motor.

Search for Parts

I found that out of 10 colors of automotive wire, I didn’t have pink. Pink is used to identify power for “reverse”. I went to a hardware, automotive, and farm supply store and couldn’t find the following:

  • Pink automotive wire
  • Relay with a 12v coil to pass 48v over the switch (actually, I couldn’t find any relays)
  • Battery side wall terminal

I’ve never really looked around an automotive store in the past. Usually I order something online and go to pick it up. I was shocked at how little the store seemed to have.

Gutting Old Parts

I pulled out the 48 volt and 12 volt battery chargers. I started removing all of the loose wires inside the battery compartment under the seat. I’ve got three of the original wires unthreaded from most of the zip ties leading to the front of the car. I was starting to run into a difficult time in the front part of the car.

The vent from the motor to the flap has been removed. I need to determine how to heat and defrost the car now that the motor can not support it.

Lithium Ion

Four battery modules from a 2015
Chevy Volt can fit into the CitiCar

I placed all four lithium battery modules in the car and found that I had enough room to place the battery charger under the seat as well. I’m considering the best placement while considering where the J-1772 inlet can be installed.

The battery modules had little nubs on the side that prevented them from sitting flush against the car. I cut them off and they now sit flush, giving an extra quarter inch to the space available beside them. I also noticed that the two newer chargers are missing the black cable that connects to the battery charger. I’ve been thinking about mounting some small angle brackets to the bottom of the battery box to prevent the modules from moving around while driving.

I’m still thinking about how to connect the four batteries. Each terminal is difficult to reach with the thick 2/0 wire terminals. I was considering adding a terminal fuse to each battery to have something to bolt onto for easier access. I also saw a copper butt seam flag connector as well that might work, letting me create two large wires rather than 10 smaller ones to connect them all together.

Wires

Dragging Wire

Someone warned me that the wires were hanging from the bottom of the CitiCar when I drove up to a car show (that was canceled) on the weekend. They offered a zip-tie, but I thought I had fixed it by pulling up the wires and rearranging the batteries by time they came back with it. Unfortunately, I should have taken them up on their offer. I noticed the wire had been dragging against the pavement. It’s time to get serious on changing over the powertrain.

Wire exposed within 2/0 battery cables from dragging on asphalt

There are a few reasons why this is happening now. The first is that the speedometer cable had been removed, which prevented the wire from going below the motor. However, the latest change was the most impactful. I had installed the motor controller and contact switches. In doing so, I moved the batteries and their wires out of the way so I could get into the area easier. I have the wrong batteries, so there is plenty of room. I think they are moving around while driving, and the motor cables just move along with them.

This is a serious issue. The cables need to be repaired immediately before I drive the car again. It’s questionable on how much of an impact this will have on the amount of amps that the wire can handle now that it’s lost some copper. There is another concern that when driving in parallel, one set of batteries will have less resistance because it has a bigger “pipe” for electrons to flow through.

The new power train is going to be a tight fit, so this will not be a problem afterwards.

Custom Cables

Now that the motor controller and contact switches are installed in the CitiCar, I started moving onto wiring them together. The wires I had were either too short or a bit too long.

I started creating a custom cable. I’m not sure how good my crimp is, so I kept crimping the lug multiple times until the whole length of it seemed to have been crimped. Luckily, I realized that I needed to get some heat shrink before crimping the next lug.

Big tools to crimp big wire terminals
A battery lug that has been crimped one too many times

Teddy and I took the SUV over to the local hardware store tonight. A pack of 5/8″ heat shrink has two tubes that are six inches long. The instructions said to add two inches to the measurement to handle the 4:1 shrinking ratio, so I picked up four packages.

The heat shrink didn’t really shrink that much in terms of length. It seems like I could have gotten away with much less slack. My custom wire looks a bit more professional – to me.

A custom 2/0 battery cable with right-angled terminals and heat-shrink tubing

After the battery cable cooled down, I installed it into the CitiCar to connect the motor negative terminals between the motor controller and the reverse contactor switches.

Custom cable connected to motor controller motor negative (M-) terminal
Custom cable connected to SW202 motor reversing switch motor negative terminal M-
Installing my first cable

Charging Cycle

I got a charge cycle that stopped due to an over-voltage fault. The high voltages at the end of the charging cycles are fairly concerning. After exhausting the CitiCar batteries on a long trip, I kept a fairly close eye on a full charge cycle, recorded the data, and made a few charts:

TimeMin RemainingAmpsAmp-HoursVoltsSoCPhase
9:3479820.9051.020%Phase 1
9:4580320.6451.720%Phase 1
9:5978920.4952.221%Phase 1
10:1377520.21452.723%Phase 1
10:2676220.11853.225%Phase 1
10:3575420.02153.525%Phase 1
10:4574619.82453.826%Phase 1
10:4974019.82654.127%Phase 1
10:5673219.62854.628%Phase 1
11:0272719.43055.029%Phase 1
11:1071919.13255.829%Phase 1
11:1771218.73557.330%Phase 1
11:2435711.93757.473%Phase 2
11:2735510.23757.473%Phase 2
11:312009.03858.289%Phase 3
11:341989.03860.989%Phase 3
11:371949.03964.790%Phase 3
11:411909.03966.190%Phase 3
11:451869.04066.990%Phase 3
11:501829.04167.390%Phase 3
11:541779.04167.690%Phase 3
11:591729.04267.991%Phase 3
12:051679.04368.091%Phase 3
12:091629.04368.091%Phase 3
12:141589.04468.191%Phase 3
12:191529.04568.192%Phase 3
12:24149.04668.192%Phase 3
12:3279.04768.092%Phase 3
12:4000.04855.8100%Not Charging
12:5400.04854.1100%Not Charging
1:0300.04853.9100%Not Charging
1:1000.04853.8100%Not Charging
1:2700.04853.7100%Not Charging
1:3600.04853.6100%Not Charging
2:0400.04853.4100%Not Charging
The state of charge always jumps by 50% in a short period of a few minutes during phase 2
Estimated time remaining is always off by about 400%
Phase 2 appears to be a very abrupt cross-over compared to charging profiles for lead acid batteries around the internet

Over Charging

The charging voltage maxed out at 68.1, each 12 volt battery got up to 17 volts. I hadn’t gone up past 14.5 with regular car chargers in the past. It seems as if the batteries are being overcharged. If they were being equalized/balanced, it would make a bit more sense. This is during the final phase after it reaches 90% charge.

Exaggerated Estimates

The initial estimate was 13 hours and 18 minutes, where the actual charging duration was three hours and six minutes. As the charger progressed through each phase of the cycle, it was getting better, but still highly exaggerated. The device is not learning from its previous charges.

Huge SoC Gains

The state of charge is sometimes abrupt. The state of charge increases gradually until it is at 30% charge at 57.3 volts. Seven minutes later, the battery state of charge jumps to 73% at 57.4 volts. Another seven minutes and we are at 89% charge at 58.2 volts. We then grow gradually up to 92% over an hour, and then jump directly to 100%.

Short Phase 2

Phase 2 is a very short cycle, that is 20 minutes at most. The cross over between dropping amps and increasing reported SoC by 50% is very sharp.

Charger Conclusion

It seems like the Lester Summit Series II charger may be defective or had the wrong battery profile. The CitiCar has four 12v Interstate 31-ECL in series. The battery profile (22001) description seems fine other than the amp hour rating. When I called up the manufacturer, the amp hours (190 RC@25 amps) wasn’t a problem and I was told that the default profile was fine.

  • Single-voltage mode: 48V flooded/wet lead-acid battery packs with a 20-hr rating of 225-260 Ah
  • Auto-voltage mode: 48V, 36V, or 24V flooded/wet lead-acid battery packs with a 20-hr rating of 225-260 Ah
  • Profile parameters: 22A bulk (48V), 25A bulk (36V), 25A bulk (24V), 2.39 VPC absorption, 9A finish, Progressive DV/DT termination, equalize active

I wish the charging status was more descriptive rather than saying “Phase 1”, “Phase 2”, and “Phase 3”. The phases do not convey any information. It would be more useful to see something like Desulfation, Bulk, Absorption, Float, and Equalize.

Capacity Monitor

The capacity monitor arrived. This was one of the last major components of the new system that I had been waiting for. It was fairly simple to setup and I started getting feedback immediately on the amount of amps the CitiCar motor uses when initially starting or going up hills and cruising.

It seems to go around 250 at most, but occasionally has small spikes at 350. Cruising appears to be around 125 amps. I’ll need to put a camera on it while driving to look back later to get a more accurate reading of data.

One special thing of note is that I’m now aware of how much phantom power is being drained. The battery charger and capacity monitor both consume a small amount of amps.

The capacity is not useful for driving at this point because the detected voltage keep swapping between 24 and 48 volts. Once I upgrade the CitiCar to always use 48 volts, the capacity should become useful. However, it does appear to be fairly accurate reporting the same number of amp hours that the battery charger reported.

The capacity monitor is more precise on the number of amp hours supplied by the charger
AiLi Voltmeter in CitiCar

Cruise Ship

Todays trip was a quick visit to the town square. We hadn’t taken the CitiCar to Main street for a while. I saw that the store next to the ice cream shop had an eight and a half foot cruise ship made out of K’NEX called K’nector of the Seas, made by Glenn Mikulak. It’s just impressive with how large and detailed it is.

K’nector of the Seas Stern
K’nector of the Seas Bow

I found this website about Glenn and his model ship: www.glennship.com

Thick Wires

Thick 12 gauge extension cord next to a thinner extension cord

With yesterdays notice of warm wires, I headed off to the hardware store tonight and picked up the thickest gauge extension cord that I could find. I found a 50 foot heavy duty extension cord that was made of 12 gauge wires. Technically, it’s thick enough for 20 amps. As for the power strip itself, I found a three foot extension cord that was also made of 12 gauge wire, but also had a three plug splitter on the end. I am no longer worried about that wire heating up.

Scratched Window

Scratches and pitting in passenger window

The driver and passenger windows have quite a bit of pitting that’s noticeable in the right light. It’s difficult to see, but it’s something that keeps bugging me ever since I purchased the car. I’ve started looking at how to fixe the problem.

One of four knobs on the passenger door keeping the window secured

The 1976 1/2 CitiCar has four thumb-screw knobs keeping the window held in. Once they are removed, the window can be removed by pushing it out from the inside. After pushing the window out, I noticed the crack on the passenger door wraps around under the window.

Passenger door window being popped out from the CitiCar.

I unscrewed the window handle and laid the window on the garage floor. I cleaned up the window with a towel and tried to buff it with some polishing cleaner. Although the window looked cleaner, the pits and scratches remained.

Passenger door window with window handle just above it

One of the things I noticed in one corner of the non-movable pane was a label indicating the material was made of Swedcast 300 Acrylic Safety Glazing M 7 AS4. I found that SWEDCAST 300 was registered by Swedlow Inc. in Garden Grove, California

Label indicating door window material

Half of me is thinking it would be better to replace the panes with real glass or something similar to what is there now. It’s late. This repair job will continue tomorrow…

Moving Chargers

Teddy and I headed over to Gertrude in the CitiCar late in the evening. It was getting into the twilight hours, and we had our lights on. Arriving back home and hooking up the charger, I noticed the cover for the contacts was fairly warm. I’m concerned that there is some arcing going on, or too many amps are passing through. It could also have something to do with the proximity of the new charger next to it.

Back to Front

I removed four of the 12 volt battery chargers in the back of the CitiCar as well as their quick disconnect plugs from the battery terminals. I moved the last 12v charger to be next to the accessory battery. I sat the Lester charger next to it as well. I got underneath the car and ran the charging wires from under the seat to the front of the car. While I was down there, I ran an extra set of wires to the front to hook up my battery meter.

Chargers moved to front of car along with a battery meter.

I no longer need to open up the seat to check the voltage. The Lester charger bumps the voltage so high that the volt meter no longer operates until the batteries stop charging. Unfortunately, the wires and chargers look like a giant rat nest.

High Current

The charging app had settings for the cable size at 12 gauge. I have a smaller 14 gauge wire from the battery to the terminal bus bar, but the app wouldn’t let me select a smaller size. To work around the problem, I added an extra 14 gauge wire to both the positive and negative busbar terminals.

Two 14 gauge wires are used to support the current of a 12 gauge wire

I’ve noticed that the wires for the power strip and the Lester charger tend to heat up. The Kill A Watt meter shows a 20% higher wattage being used than the charger is rated for. My goal is to wire up the outlet in the front of the CitiCar to a standard household outlet, and remove the power strip. I’ve also noticed a smell of spoiled eggs when charging. I keep leaving the garage door open just to feel like I’m doing something that might be safer.

I’ll need to wire up a J1772 inlet into the same line, but first I need to find a 12 volt charger that can sense if it is connected to 120 or 240 volts.

Interference

I saw a video on YouTube where someone was demonstrating the effect aluminum has on detecting GPS satellites. I moved the speedometer GPS sensor to another part of the car.

In other news

Rather than splitting out my biweekly deposit through weighted positions in my portfolio, I decided to throw it at Tesla. The companies stock usually does so well that my deposits usually go to everything else that is underweight unless I manually intervene. I feel like I’m playing catch up. It’s nice to finally see the number of shares rather than just the price going up for a change.

Speedometer Cable

Now that I’m using a GPS speedometer, the existing speedometer cable is no longer needed. The cable was entering the floor next to where the new throttle was installed, and I was fairly concerned that it could get caught up on the arm. It also clears up the mess of wires behind the dashboard a bit.

Speedometer cable entering car through floor next to throttle pot box

There was a bunch of black rubbery caulk where it entered through the floor. Once the caulk was removed, I saw that the throttle I installed covered part of the opening. It was difficult with the room remaining – but after working with it, I was able to pull the end with the bolt out.

The next part was pulling the cable off of the underside of the car. It was threaded above the brake lines and emergency break. Once I got most of it pulled through and hanging out of the front of the car, the next step was to remove the other end.

I was able to unbolt the speedometer cable by reaching down into the battery compartment. It was a tight area trying to get a good grip with some pliers, but it was easier than pulling the bolt through the floor.

Speedometer cable zip tied to underside of CitiCar frame

I thought I was home free as the wire started sliding freely under the carriage until I hit a snag. It was in a tight spot that I couldn’t see. I got out my phone and looked around. A zip-tie was holding it against the frame. After confirming that no other wires were being held in place, I jacked up the car enough that I could reach up with some tin-snips and cut the zip tie.

The cable is fairly sturdy and doesn’t like bending much. It was holding its shape pretty well after being removed from the car. Each end has a metal shaft that spins to indicate how fast the motor is spinning. It may seem like a simple task, but its another step forward. Progress.

In other news

I took my SUV into a car dealership. I’ve had two people “fix” it already, and it feels like I’m losing money on temporary fixes. The professionals took a look at it. Although only a fastener on the transmission was broken, I was told that the shifter cable needed to be replaced as well since it’s more of a combination of the cable and fastener.

The parts will be in tomorrow morning. I had the option to bring it home, but I was told that the vehicle broke again as they parked it. I felt lucky that I was able to get it to the dealership, and wasn’t about to tempt fate again driving it home and back. The walk home was about three miles. I sense another long walk in my immediate future.

The walk home had me thinking of what options I may have to haul the CiitCar on a small trailer, that the CitiCar could haul on its own. It would have to be very lightweight and support the CitiCars weight. It would give me the option of hauling it to a destination where the towing vehicle can be dropped off. Both of my primary vehicles have a hitch. I would need to determine where I could install a hitch on the CitiCar.

Another thing to look into is if the trailer could serve as some kind of car jack that would make it easier for me to get underneath of the car to make upgrades and repairs. Of course, I would have to stabilize the trailer – but it would seam to be a safer way to jack it up, and to a higher level.

Two aught

I reached out for help regarding battery cables with other d-car owners and enthusiasts. Along with the advice that I got, one of the locals that I met in the CitiCars maiden voyage was willing to help out with supplies and tools leftover from his EV conversion project. Teddy and I hopped into our little car and zipped downtown to the town square.

We met up and with more understanding of the parts of an EV, I was able to have a more knowledgeable conversation this time and had a lot of questions to ask regarding his setup. learning a bit more about how the guy upgraded his pickup truck. I paid more attention to his setup and had my eye on his use of project boxes to keep things segregated, organized and protected. He had quite a bit of advice when I asked about wiring harnesses and thoughts regarding a themed car that could be easily reverted without damaging the body. His thoughts were to look into Plasti Dip and a brand for “Painless wiring” for quality cables/connections where cables are labeled and easy to install.

He had a large box of thick battery cables and two bags of battery lugs. The box was heavier than I had thought and caught me off guard for a moment. Along with the box of cables, I was able to borrow some wire cutters and a gigantic crimping tool. I opened the CitiCars back window and we stuck everything in with plenty of room to spare. Unfortunately, I forgot to grab the wire cutters…

Teddy grows some wings

Teddy and I enjoyed the park and took a stroll down main street. We went through Inklings, posed in front of a mural, and grabbed some ice cream from C & C Frozen Treats. Teddy had some mango while I ordered a quart of brownie ice cream.

Teddy, Lewie, and The Chez CitiCar

By time we left, it looked like a bunch of antique cars were arriving into the town square for a little car show. I had to bail before the rain came. I didn’t make it home in time, and the rain was coming down pretty hard. I kept the wiper on the lowest setting and didn’t run into any problems blowing a fuse this time.

Running 120 volt AC via J1772

The replacement Level 1 & 2 electric vehicle supply equipment (EVSE) arrived today. I verified that it was operational and setup the CitiCar to charge it’s batteries through a J1772 port. I don’t know if the folks at Sebring-Vanguard had ever imagined such a thing, but I am now able to recharge the car at a public charger. Here is the setup in order from the wall to my cars batteries in my little experiment:

  • 120 volt (5-15) outlet in wall
  • Level 1 & 2 EVSE (5-15 & 6-20)
  • EV Charger Power Converter (from J1772 to 120v & 240v)
  • Power strip
  • Five 12 volt battery chargers
  • Four deep cycle batteries for the motor and one small accessory battery
Displaying how I’m charging lead acid batteries with power supplied via J1772

I was loosing a tenth of an amp with the EVSE and power converter. To add more fun to the experiment, I decided to let the car charge to full capacity through the J1772 setup and see how much the total energy is affected.

Cable Inventory

Battery cables

Later in the night I started going through the battery cables I received to get an idea of what I had. The cables can be called either 00, double zero, 2/0 and pronounced as “two aught”.

I started taking inventory, measuring inches from the center hole of each lug.

LengthQuantityLengthQuantity
11
6710¾1
413¼1
213½1
7113¾4
1142
114¼4
114¾1
Cables with flat lugs at each end

Some cables also had a 90 degree lug at one end, but the shorter ones didn’t have a lug at all on the opposite end.

Missing LugTwo Lugs
5
4
312
12¾
13½
Cables where one end has a 90 degree lug

Two long cables were included that were 13 feet, eight inches, and another at fourteen feet, 11 inches. The longer cable didn’t have a lug on one of the ends.

There are quite a few good cables that I can use. The longer cables alone may be enough on their own. Many of the smaller pieces can be used for jumps between switches, fuses, controllers, and such.

Battery cable connected to two Chevy Volt battery modules

I found that I could barely use the 10¾” cable to connect two Chevy Volt battery modules next to each other. I have four cables that are 13¾, and four more at 14¼ that I could use with more slack between the batteries. It’s preferable to have a shorter length to reduce voltage drops. Although with the length of this circuit, the drop would already be fairly minimal.

Corroded lug
Wire brushed lug

I spent some time cleaning up one of the most corrosive lugs. I first tried to do it by hand with a wire brush with some progress. I then grabbed my angle grinder with a wire brush attachment and cleaned it up fast. I was finding that I was chasing some of the corrosion down under the heat shrink around the lug.

Things are coming along great. I have many cables that I can clean up and use once the motor arrives. I have the supplies necessary to make my own custom length of cables as well.

Tiny Radio

One of my tiny car radio modules came in the mail today. I actually ordered three different kinds because it was difficult to judge how big they were. This three dollar radio was originally just for a side project to stick on a repurposed 8-track tape. The idea was to give my 8-Track radio some modern features to play music from a blue tooth device as well as micro SD cards.

Bluetooth MP3/WMA decoder USB/Micro SD/Aux FM radio module

I was originally set on installing an 8-Track radio and an Android media entertainment center for navigation in the CitiCar. I’m having a difficult time determining where I should put them. I don’t have much space available on the dashboard to mount things, or the support to mount anything with some weight. I’m considering using one of the little radio modules instead.

I was able to wire the little radio up to work with both five and 12 volts, as advertised. The radio works, Bluetooth hooked up without a problem, and I was able to get MP3 files playing from a micro SD card. One thing of note is that I definitely need an amp. The little radio can put out a signal, but any speaker I try is so low, it is difficult to hear. The voltage supplied to the radio does not make a difference.

WAYPOINTODOMETERDISTANCE
Home1,134.1
Town Square1,138.03.9
Home1,141.93.9
Total7.8
RECHARGEENERGYCOSTDURATION
RatekWh9.85¢0.46 mph
Total2.21 kWh22.4¢17:00
Per Mile283 Wh2.9¢02:10

Under pressure

External TPMS sensor

The TPMS monitor arrived. The packaging looked like it was opened along the way going through customs.

It was fairly easy to install. Replace tire stem caps with little knobs. An alarm went off almost immediately as I put one on. I changed the units of measurement so the pressure and temperature were set to PSI and Fahrenheit.

TPMS host display

My tires were setting around 20 psi. The maximum pressure for the tires is rated at 51 psi.

I did some quick research and found most cars have a pressure around 32 psi, and that the door should have a sticker with the recommended tire pressure. I only saw the sticker with the VIN on it. I dug through the owners manual and found that Sebring-Vanguard recommended a tire pressure of 32 psi. Inflated the tires to 35 psi.

RECOMMENDED TIRE PRESSURE

The recommended tire pressure for standard and radial tires, front and rear is 32 psi. A lower tire pressure will give a softer ride, but a lower speed and ranger a higher tire pressure gives better speed and range.

CitiCar 1976½ Owners Manual, Sebring-Vanguard page 24

Power Transmission

Along with receiving the majority of parts by the end of next week, I’ve been researching battery cables. The first thing was to identify the amps going through everything.

DeviceAmpsPeak
Charger2020
Battery Monitor350500
4 Battery Modules4 * 250
1000
4 * 400
1600
Battery Switch350
600@5 min
1200@30 sec
1200
Fuse400400
Contact Solenoid650650
Motor Controller380
420@5 min
500@2 min
575
Reversing Contactor400400
Motor52-584584
Max Amps Allowed350400
Amperage that devices can produce, handle, or draw in the circuit

The fuse does not allow any more than 400 amps supplying the motor. From here, I was able to get a general idea of how large the battery cables need to be.

In addition to amps, I also had to take voltage drop into consideration. To do this, you need to know the length of the full path in circuit – battery to motor, and back again. I took some string and laid it out in a large loop around the bench seat. It came out to roughly nine feet.

The parameters are 48 volts @ 400 amps running along nine feet of cable. I found a calculator and put in the following:

InputValueCalculated
MaterialCopper
Gauge2/0 AWG
00 AWG
Voltage48 VDC
1-way circuit length4.5 feet
Load400 amps
0.288 VDCVoltage Drop
47.712 VDCVoltage at Load
0.6%Voltage Drop
133100
circular mils
Wire cross section

It appears 2/0 AWG wire will handle the maximum load the fuse will allow with a minimal voltage drop.

In other resources, I’m finding that 00 gauge is often rated for a maximum current of 186 amps, and that you should never exceed 80% of the rating (148.8 amps). Even a 4/0 wire will only be rated for 380 amps max.

In this scenario, it feels like the wire will melt before the fuse breaks. Things that confuse me are that the information that I’m finding is often for bringing electric into a house. I often look at how golf carts are wired up, but they are often working with 2 AWG wire, which is much smaller than 2/0 AWG.

To support 400 amps, I think I would need 500 kcml / 500 mcm of copper wire rated for 90°C. It looks like it costs roughly $14/foot. The wire is thick – as in power lines on telephone poles. I wouldn’t have the ability to afford tools to cut, crimp, and bend the stuff. Besides speed, I think modern EV’s go with higher voltage systems to reduce the amps needed, thus reducing the size of the wire.

The motor controller supports current limiting, so I could force it to use no more than 148.8 amps if I desired.

Someone local that I met on the maiden voyage has a few tools and supplies to help out with that they had used on their own EV.

In other news

  • D & D Motor Systems is shipping my motor.
  • Popular Science, June 1975 has been shipped
  • The portable EVSE has been shipped
  • I need to do some research on plug breaking / dynamic braking
  • I may need to contact D & D Motor Systems or Alltrax to see if they have a field map for my specific motor / controller.